a2 United States Patent

Galicia et al.

US009367331B2

US 9,367,331 B2
*Jun. 14, 2016

(10) Patent No.:
(45) Date of Patent:

(54)

(735)

(73)

")

@
(22)

(65)

(60)

(1)

MULTI-ENVIRONMENT OPERATING
SYSTEM

Inventors: Joshua D. Galicia, Cary, 1L, (US);
Jeffrey C. Carlyle, Grayslake, IL. (US);
Andrew N. Tzakis, Vernon Hills, IL
(US); Nicholas C. Hopman, Lake
Zurich, 1L, (US)

Assignee: GOOGLE TECHNOLOGY
HOLDINGS LLC, Mountain View, CA
(US)

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 734 days.

This patent is subject to a terminal dis-

claimer.
Appl. No.: 12/839,193
Filed: Jul. 19, 2010

Prior Publication Data

US 2011/0093691 Al Apr. 21, 2011

Related U.S. Application Data

Provisional application No. 61/226,955, filed on Jul.
20, 2009, provisional application No. 61/226,974,
filed on Jul. 20, 2009, provisional application No.
61/226,988, filed on Jul. 20, 2009, provisional
application No. 61/291,269, filed on Dec. 30, 2009.

(52) US.CL
CPCcc..... GOG6F 9/441 (2013.01); GO6F 9/4406
(2013.01)
(58) Field of Classification Search

CPC GOGF 9/441; GOGF 9/4406
USPC 713/1, 2, 100, 300, 320
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS
5,119,494 A 6/1992 Garman
5,446,904 A 8/1995 Belt et al.
5,592,657 A 1/1997 Johnson et al.
5,757,371 A 5/1998 Oran et al.
(Continued)
FOREIGN PATENT DOCUMENTS
CN 101025701 A 8/2007
CN 101051282 A 10/2007
(Continued)
OTHER PUBLICATIONS

U.S. Appl. No. 12/839,069, filed Jul. 19, 2010, “System and Method
for Switching Between Environments in a Multi-Environment Oper-
ating System”; 29 pages.

(Continued)

Primary Examiner — Mark Connolly
(74) Attorney, Agent, or Firm — McDermott Will & Emery
LLP

HARDWARE 20

57 ABSTRACT
Int. C1. A device with multiple, co-existing, and independent envi-
GOGF 9/00 (2006.01) ronments interacting with a common kernel, and related
GO6F 15/177 (2006.01) methods of operation, are disclosed herein. Operation is
GOGF 1/00 (2006.01) altered or dependent on the device being or entering a docked
GO6F 1/26 (2006.01) mode.
GO6F 1/32 (2006.01)
GO6F 9/44 (2006.01) 19 Claims, 13 Drawing Sheets
A 24
32~ 28~ 34~ 6~
ANDROID PORTAL RESOURCE
APPS ACTVITY MANAGER LINUX APPS
30~ 26~ < > 36~ 40~
ANDROID PORTAL AW LINUX
SERVICES SERVICES SERVICES
LNuxuser 6
LINUX KERNEL - 4)2 4)4
— o 1 L
18 1| DRIVERS !

US 9,367,331 B2

Page 2
(56) References Cited 2005/0240763 A9 10/2005 Bhat et al.
2005/0246505 Al 11/2005 McKenney et al.
U.S. PATENT DOCUMENTS 2005/0268078 Al 12/2005 Zimmer et al.
2006/0005187 Al 1/2006 Neil
5,828,376 A 10/1998 Solimene et al. 2006/0010314 Al 1/2006 Xu
6.043.816 A 3/2000 Williams et al. 2006/0010446 Al 1/2006 Desai et al.
6.133.915 A 10/2000 Arcuri of al. 2006/0026274 Al 2/2006 Cho et al.
6.167.425 A 12/2000 Beckhoff 2006/0046706 A1 3/2006 Linet al.
6,170,045 Bl 1/2001 Bobak et al. 2006/0146057 Al 7/2006 Blythe
6178503 Bl 12001 Madden ef al. 2006/0224989 Al 10/2006 Pettiross et al.
6.205.452 Bl 3/2001 Warmus et al. 2006/0225107 A1 10/2006 Seetharaman et al.
6215490 Bl 4/2001 Kaply 2006/0253706 Al 11/2006 Roberts et al.
6,336,120 B1* 1/2002 Noddings GO6F 17/30067 2007/0050765 AL* 3/2007 GeiSINGOr ...vvvvvvvivvvvsivsnrnn: 718/1
707/829 2007/0128899 Al 6/2007 Mayer
6,336,146 Bl 1/2002 Burridge et al. 2007/0135043 Al 6/2007 Hayes et al.
6,338,149 Bl 1/2002 Ciccone, Jr. et al. 2007/0150842 Al 6/2007 Chaudhri et al.
6,460,136 B1* 10/2002 Krohmer etal. 713/2 2007/0162298 Al 7/2007 Melton et al.
6.571.282 Bl 5/2003 Bowman-Amuah 2007/0180398 Al 8/2007 McArdle
6,691,146 Bl 2/2004 Armstrong f al. 2007/0192329 Al 8/2007 Croft et al.
6.710.788 Bl 3/2004 Freach et al. 2007/0198656 Al 8/2007 Mazzaferri et al.
6757.002 Bl 6/2004 Oross et al, 2007/0226647 A1 9/2007 Louch
6,763,458 Bl 7/2004 Watanabe et al. 2007/0266231 Al 11/2007 Chua
7,114,104 Bl 9/2006 Bennett 2007/0283147 Al* 12/2007 Friedetal. 713/167
7,328,333 B2 2/2008 Kawano et al. .oooovvevvovn, 713/1 2007/0288941 Al 12/2007 Dunshea et al.
7,363,128 B2 4/2008 Dietsch et al. 2007/0294689 Al 12/2007 Garney
7424601 B2 9/2008 Xu 2008/0028326 Al 1/2008 Wilson et al.
7424623 B2 9/2008 Du et al. 2008/0034318 Al 2/2008 Louch et al.
7,461,144 B1* 12/2008 Beloussov etal. 709/223 2008/0082815 Al 4/2008 Kawano et al.
7468.729 B1 12/2008 Levinson 2008/0100568 Al 5/2008 Koch et al.
7523738 B2 4/2009 Ruiz 2008/0114844 Al 5/2008 Sanchez et al.
7,529,921 B2* 5/2009 Steinetalccoccoomrrrrinns 713/1 2008/0162983 Al 7/2008 Baba et al.
7.533.101 B2 5/2009 Bond et al. 2008/0256468 Al 10/2008 Peters et al.
7.536.537 B2 5/2009 Linn 2008/0270910 Al 10/2008 Lukasik et al.
7.590.945 B2 9/2009 Sims et al. 2008/0276195 Al 11/2008 Moromisato et al.
7505810 B2 9/2009 Louch 2008/0282205 Al 11/2008 Dykstra-Erickson et al.
7634770 B2 12/2009 Roth 2008/0307350 A1 12/2008 Sabatelli et al.
7.636,586 B2 12/2009 Maaniitty 2008/0307360 Al 12/2008 Chaudhri et al.
7,681,134 Bl 3/2010 Grechishkin et al. 2009/0031329 Al* 1/2009 Kim ..o 719/327
7,689,820 B2* 3/2010 Pierce etal. ...cco.ccoovrrrrinns 713/2 2009/0037909 Al 2/2009 Xu
7,783,665 B1* 82010 Tormasov etal. ... 707/783 2009/0063845 AL* 3/2009 Lin oo, 713/100
7,882,274 B2 2/2011 Peterson 2009/0064186 Al 3/2009 Lin
7,975,236 Bl 7/2011 Grechishkin et al. 2009/0080562 Al 3/2009 Franson
8,046,570 B2 10/2011 King etal. 2009/0089569 Al* 4/2009 Baribaultetal. 713/2
8.177.554 B2 5/2012 Krasner 2009/0158299 Al 6/2009 Carter
8.195.624 B2 6/2012 Yang 2009/0193074 A1 7/2009 Lee
8.261.231 Bl 9/2012 Hirsch et al. 2009/0199122 Al 8/2009 Deutsch et al.
8307.177 B2 11/2012 Prahlad et al. 2009/0199219 Al 8/2009 Rofougaran et al.
8352733 B2 1/2013 Mantere et al. 2009/0235200 A1 9/2009 Deutsch et al.
8392498 B2 3/2013 Berg et al. 2009/0241072 A1 9/2009 Chaudhri et al.
8.396.807 Bl 3/2013 Yemini et al. 2009/0276771 Al 11/2009 Nickolov et al.
8448251 B2 5/2013 Harris et al. 2009/0287571 Al 11/2009 Fujioka
8589.052 B2 11/2013 Wong ctal. 2009/0327917 A1 12/2009 Aaron et al.
8,661,360 B2 2/2014 Jeong et al. 2009/0328033 Al 12/2009 Kohavi et al.
8.868.899 B2 10/2014 Galicia et al. 2010/0064251 Al 3/2010 Hufnagel et al.
89057905 B2 2/2015 Reeves ot al. 2010/0077347 Al 3/2010 Kirtane et al.
8.983.536 B2 3/2015 Gangam et al. 2010/0097386 A1 4/2010 Kim et al.
2001/0035882 Al 11/2001 Stoakley et al. 2010/0107115 Al 4/2010 Sareen et al.
2002/0078260 Al 6/2002 Hart et al. 2010/0138515 Al 6/2010 Ruiz-Velasco et al.
2002/0140742 Al 10/2002 Lection et al. 2010/0192149 Al 7/2010 Lathrop et al.
2002/0151334 Al 10/2002 Sharma 2010/0211769 Al* 82010 Shankaretal. ... 713/2
2002/0157001 Al 10/2002 Huang et al. 2010/0217912 Al 8/2010 Rofougaran et al.
2003/0065738 Al 4/2003 Yang et al. 2010/0245037 Al 9/2010 Davis et al.
2003/0135771 Al* 7/2003 Cuppsetal. 713/320 2010/0313156 Al 12/2010 Louch et al.
2003/0204708 Al 10/2003 Hulme et al. 2010/0313165 Al 12/2010 Louch et al.
2003/0221087 Al1* 11/2003 Nagasaka ... 712/209 2010/0319008 Al 12/2010 Ho
2004/0015966 Al 1/2004 MacChiano et al. 2010/0333088 Al 12/2010 Rogel et al.
2004/0039950 Al 2/2004 Okamoto et al. 2010/0333100 Al 12/2010 Miyazaki et al.
2004/0061723 Al 4/2004 Taj et al. 2011/0016299 Al* 12011 Galiciaetal. 713/1
2004/0066414 Al 4/2004 Czerwinski et al. 2011/0016301 Al* 12011 Galiciaetal. ... 713/2
2004/0095388 Al* 5/2004 Rocchettietal. ... 345/763 2011/0022993 Al 1/2011 Ohno etal.
2004/0111644 Al 6/2004 Saunders et al. 2011/0054879 Al 3/2011 Bogsanyl et al.
2004/0148375 Al 7/2004 Levett et al. 2011/0055602 Al 3/2011 Kamay et al.
2004/0205755 Al 10/2004 Lescouet et al. 2011/0066984 Al 3/2011 Li
2004/0207508 Al 10/2004 Lin et al. 2011/0093836 Al* 42011 Galiciaetal.c.c...... 717/139
2005/0086650 Al 4/2005 Yates et al. 2011/0119610 Al 5/2011 Hackborn et al.
2005/0108297 Al 5/2005 Rollin et al. 2011/0126216 Al* 52011 Galiciaetal.cooooer.... 713/2
2005/0125739 Al 6/2005 Thompson et al. 2011/0138295 Al 6/2011 Momchilov et al.
2005/0229188 Al 10/2005 Schneider 2011/0138314 Al 6/2011 Miretal.
2005/0240756 Al 10/2005 Mayer 2011/0144970 Al 6/2011 Jianget al.

US 9,367,331 B2
Page 3

(56) References Cited
U.S. PATENT DOCUMENTS

2011/0179387 Al
2011/0246786 Al
2012/0036450 Al
2012/0041570 Al
2012/0042159 Al*
2012/0081353 Al
2012/0081380 Al
2012/0083264 Al

7/2011 Shaffer et al.
10/2011 Laor et al.
2/2012 Canton
2/2012 Jones et al.
2/2012 Lit oo 719/318
4/2012 Yusupov et al.
4/2012 Reeves et al.
4/2012 Ramasamy et al.

2012/0084542 Al* 4/2012 Reevesetal. 713/2
2012/0084791 Al* 4/2012 Gangametal. . 718/102
2012/0102495 Al* 4/2012 Gangametal. 713/1

2012/0150970 Al
2012/0151372 Al
2012/0173741 Al
2012/0173986 Al
2012/0174021 Al
2012/0192100 Al
2012/0227058 Al
2012/0278747 Al
2012/0278750 Al
2012/0304092 Al
2013/0160013 Al
2013/0212283 Al
2013/0293573 Al
2013/0298140 Al
2013/0298141 Al
2013/0311682 Al

6/2012 Peterson et al.
6/2012 Kominac et al.
7/2012 Brittain et al.
7/2012 Jung
7/2012 Dharawat
7/2012 Wang et al.
9/2012 Hunt et al.
11/2012 Abraham et al.
11/2012 Abraham et al.
11/2012 Jarrett et al.
6/2013 Pires et al.
8/2013 Wang et al.
11/2013 Wolfe et al.
11/2013 Wolfe et al.
11/2013 Wolfe et al.
11/2013 Barat et al.

FOREIGN PATENT DOCUMENTS

CN 101149685 A 3/2008
CN 101203842 A 6/2008
CN 101382833 A 3/2009
CN 101615123 A 12/2009
CN 101697181 A 4/2010
EP 157783 Al 10/1985
EP 1059582 A2 12/2000
EP 1688816 Al 8/2006
GB 2369959 A 6/2002
JP H07-121336 A 5/1995
JP 2005-242445 A 9/2005
JP 2007-034600 A 2/2007
JP 2009-157802 A 7/2009
RU 2005136419 A 5/2007
RU 2331160 C2 8/2008
WO WO-03/027876 Al 4/2003
WO WO-2005/043862 Al 5/2005
WO 2007035611 A2 3/2007
WO WO-2010/148306 A1 12/2010
WO WO-2011/060382 Al 5/2011
WO WO-2012/012865 Al 2/2012
WO WO-2012/148881 Al 11/2012
WO WO-2012/148885 Al 11/2012
OTHER PUBLICATIONS

U.S. Appl. No. 12/838,668, filed Jul. 19, 2010, “System and Method
for Initiating a Multi-Environment Operating System”; 29 pages.
U.S. Appl. No. 12/838,868, filed Jul. 19, 2010, “Multi-Environment
Operating System”, 28 pages.

U.S. Appl. No. 12/838,984; filed Jul. 19, 2010, “Multi-Environment
Operating System”, 43 pages.

Kernel (computing) from Wikipedia; http://en.wikipedia.org/wiki/
Kernal _(computer__science); 18 pages, printed Jun. 5, 2009.
Ubuntu from Wikipedia; http://en.wikipedia.org/wiki/ubuntu; 12
pages, printed Jun. S, 2009.

Ubuntu Mobile; http://en.wikipedia.org/wiki/ubuntu__mobile; 2
pages, printed Jun. S, 2009.

Patent Cooperation Treaty, “PCT Invitation to Pay Additional Fees
and, Where Applicable, Protest Fee” for International Application
No. PCT/US2010/042530 Jul. 11, 2011, 7 pages.

The Xen Team: “Users’ manual Xen v2.0 for x86”, University of
Cambridge, UK, Dec. 31, 2004, 56 pages, XP002638667.

Patent Cooperation Treaty, “PCT Invitation to Pay Additional Fees
and, Where Applicable, Protest Fee” for International Application
No. PCT/US2010/042526 Jun. 24, 2011, 7 pages.

David Turner: “Introducing Android 1.5 NDK, Release 17, Jun. 25,
2009, 4 pages.

Hassan Z.S., “Ubiquitous Computing and Android” Third Interna-
tional Conference Digital Information Management 2008, IEEE,
Piscataway, NJ, USA, Nov. 13, 2008, 6 pages.

Baentsch M. et al., “Mote Runner: A Multi-Language Virtual
Machine for Small Embedded Devices”, 2009 Third International
Conference on Sensor Technologies and Applications, IEEE,
Piscataway, NJ, USA, Jun. 18, 2009, 10 pages.

Patent Cooperation Treaty, “PCT Notification of Transmittal of the
International Search Report and the Written Opinion of the Interna-
tional Searching Authority, or the Declaration”, Oct. 26, 2011, 16
pages, PCT/US2010/042530.

United States Patent and Trademark Office, Non-Final Office Action
for U.S. Appl. No. 12/839,069 dated Sep. 10, 2012, 12 pages.
United States Patent and Trademark Office, Non-Final Office Action
for U.S. Appl. No. 12/838,984 dated Mar. 28, 2013, 16 pages.
United States Patent and Trademark Office, Final Rejection Office
Action for U.S. Appl. No. 12/838,868 dated May 8, 2013, 10 pages.
An Overview of Virtulization Techniques, Jun. 4, 2009, www.
vitruatopia.com/index.php/AnOverview_ of Virtualization_ Tech-
niques, 4 pages.

Android Central Forums: Getting Started with Android—Tips and
Tricks, http://forums.androidcentral.com/general-help-how/31622-
getting-started-android-tips-tricks.html, Sep. 2010, excerpted 41
pages.

The Sun Babelfish Blog, “why Apple Spaces is Broken,” Nov. 2007,
blogs.oracle.com/bblfish/entry/why__apple_spaces_is_ broken, 24
pages.

Citrix: Go ToAssist Corporate Remote Support Made Easy, www.
gotoassist.com, Fact Sheet, 10.8.10/B-27141/PDF, 2010, Citrix
Online LLC.

Citrix: Go ToAssist Corporate Remote Support Made Easy, www.
gotoassist.com, Product Overview, 4.21.10/B-26651/PDF, 2010,
Citrix Online LLC.

Citrix: Go ToAssist Express Remote Support Made Easy, www.
gotoassist.com, Fact Sheet, 9.27.10/B-21307/PDF, 2010, Citrix
Online LLC.

Dormon: Motorola Atrix Lapdock, http://www.theregister.co.uk/
Print/2011/08/19/accessory__of the_ week motorola_ atrix__
lapdock, Aug. 2011, 8 pages.

D’SA, “Run Android apps on Windows,” Nov. 2011, http://tech2.in.
com/how-to/apps/run-android-apps-on-windows/259042.

EGL 1.0 Specification, published Jul. 23, 2003.

Getting Started with VMware Fusion for Mac OS X, VMware, item
EN-000189-00, copyright 2007- 2009, VMware, Inc.

Herrman: VM Ware For Mobile Devices Lets yuou Run Windows and
Android Simultaneously, http://gizmodo.com/5160685/vmware-for-
mobile-devices-lets-you-run-windows-and-android-simulta-
neously/all, Feb. 2009, 2 pages.

Kobie, “Vmware demos mobile virtualisation,” Feb. 2009, http://
itpro.co.uk/609992/vmware-demos-mobile-virtualisation.

Martin: iTunes 9.0.2 Improves App Sorting, http://reviews.cnet.com/
8301-19512_ 7-10387022-233.
html?tag=contentMain;contentBody; Ln, Oct. 2009, 5 pages.
Nakajima, et al., “Composition Kernel: A multicore Processor
Virtualization Layer for Rich Functional Smart Products,” Software
Technologies for Embedded and Ubiquitous Systems, Oct. 2010, pp.
227-238.

Parallels: Parallels Workstation, http://www.parallels.com/products/
workstation/, downloaded Dec. 28, 2012.

Paul, “Canonical developers aim to make Android apps run on
Ubuntu,” May 2009, http://arstechnica.com/gadgets/2009/05-ca-
nonical-developerss-aim-to-make-android-apps-run-on-ubuntu/.
Payne, et al. “Lares: An Architecture for Secure Active Monitoring
Using Virtualization,” IEEE Symposium on Security and Privacy,
May 2008, pp. 233-247.

Payne, et al. “Secure and Flexible Monitoring of Virtual Machines,”
Computer Security Applications Conference, Dec. 2007, pp. 385-
397.

US 9,367,331 B2
Page 4

(56) References Cited
OTHER PUBLICATIONS

Ramananthan: Ubuntu For Android: The Complete Story, http://
www.muktware.com/2012/02/ubuntu-for-andriod-the-complete-
story/2553, Feb. 2012, S pages.

Richardson, et al., “Virtual Network Computing,” IEEE Internet
Computing, IEEE Service Center, Jan. 1998, vol. 2, No. 1, pp. 33-38.
Tubbs, “Windows Live Mesh 2011 and SkyDrive Synced Storage
woven together nicely; still a few loose threads,” posted Oct. 29,
2010, http://www.wysiwygmedia.com/reviews/windows-live-mesh-
201 1-and-skydrive-synced-storage-woven-together-nicely-still-a-
few-loose-threads.wm.

“Ubuntu Linux Rocks!!” published Nov. 15, 2009, http://
maxtheitpro.com/ubuntu-linux-rocks.

Vmware: VMware Workstation 7 Product FAQs, downloaded Apr.
18, 2011.

VMware Workstation 7, The Gold Standard in Desktop Virtualiza-
tion, Product Datasheet, 2009, www.vmware.com.

Whitwam: Everything You Need to Know about Ubunto for Android;
http://www.tested.com/tech/android/3627-everything-you-need-to-
know-about-ubuntu-for-android/, Feb. 2012, 5 pages.

Windows Live Mesh, Windows Live, 2011, Microsoft.

Casadevall, et al., “Android Execution Environment,” retrieved from
<https://wiki.ubuntu.com/Specs/AndroidExecutionEnvironment>,
Apr. 28, 2009, 5 pages.

Codecoffee, “How to compile & execute C programs under Linux
(Absolutebasics),” Oct. 2009, retrieved from http://www.codecoffee.
com/tipsforlinux/articles/18 html.

Maker, “A Survey on Android vs Linux,” University of California
2009, pp. 1-10.

Meier “Professional Android 2 Application Development,” Aug.
2010, retrieved from http://esys.ir/files/ref _books/android/esys.ir__
professional %20android%202%?20application%20development.
pdf.

Wikipedia “Comparison of X Window System desktop environ-
ment,” Jan. 2009, retrieved from http://en.wikipedia.org/wiki/Com-
parison__oCX_ Window_ System__desktop__environments.
Wikipedia “GNU C Library,” Nov. 2009, retrieved from http://en.
wikipedia.org/wiki/GNU__C_ Library 4 pages.

Wikipedia “POSIX,” Apr. 2009, retrieved from http://en. wikipedia.
org/wiki/POSIX, 5 pages.

Wikipedia “Taskbar” retrieved from http://en.wikipedia.org/wiki/
Taskbar dated Feb. 24, 2010, 7 pages.

Wikipedia “X Window System,” Jan. 2009, retrieved from http://en.
wikipedia.org/wiki/X_window_ system, 11 pages.

Gelchlik, “How to Lock Your Computer with Bluetooth Proximity
Lock Utility,” Apr. 2010, http://www.makeuseof.com/tag/lock-win-
dows-computer-bluetooth-proximity-lock-utility/.

Mac OS X Hints, “Lock and unlock a Mac using Bluetooth detec-
tion,” Dec. 2009, http://hints.macworld.com/article.
php?story=20091221173111783.

Ubuntu forums, “Howto: Use BlueProximity and your cellphone for
security,” Feb. 2008, http://ubuntuforums.org/showthread.
php?t=702372.

Webtop Application, archived Apr. 29, 2011, 6 pages, retrieved from
https://web.archive.org/web/20110429011220/http://www.
motorola.com/support/us-en/consumer-support/software/webtop__
application.

* cited by examiner

Sheet 1 of 13 US 9,367,331 B2

Jun. 14, 2016

U.S. Patent

LT T
AN)
‘/AVAWAVWZ@?

R | E—

Vi 545

US 9,367,331 B2

Sheet 2 of 13

Jun. 14, 2016

U.S. Patent

Sl—

JUYMAHVH 30IA3d
0z~
| TANYIN XANIT m
T |
LN |
| AX “
| et etetstetote - fmh“ ettt ststetote : m
! | | “ “ (SETUNA MIATVA) “ “
! | STOOL/SIUVHANNAND | \o! ! JNILNNY IOHANY ! !
| | 67 . o | !
i ! WHOMINVHA ! ! WHOMIWVYA ! m
| ! NOILYDITddY NND ! ' | NOILYDIddV QIOdaNY | ! !
' 87	= "																																									
“ 8 HYMITAAIW “	4 UYMITAIN																																									
m_h																					- m.U																					-
i L e ! “ w L Miava) m m																																										
! SNOILYDITddV i ! SNOILYOITddY _ “																																										
! 97 < !
_ ¥3sn |
m vz XNNIT 44 “

US 9,367,331 B2

Sheet 3 of 13

Jun. 14, 2016

U.S. Patent

re-

02 IUYMQANVH
— . 1 SEEEL L2
| e “
£1'61— | M— e 4151
lep
— TANYI XONIT_
5 ¥ISNXONI
SIOIANIS e SIOINITS SI0INITS
XNNIT WLNOd QIONANY
T N A ”V. N <08
HIOVNVI ALINLOV Sddv
SddV XNNI 3OHN0STY W.LH0d QIOHANY
<9 7 7 <Ze

4

US 9,367,331 B2

Sheet 4 of 13

Jun. 14, 2016

U.S. Patent

NIG/WNILSAS/

S3vHAI
NINNEN

4
gIT/W3LSAS/

AdVHEl]

O NNS

§38S300¥d
NINNEN

25~
NIB/INILSAS/

4

TANYIM XNNIT
d3SN XNNIT
NIG/NILSAS/
AdvHall
O JINOIg
SAVHAIT §3SS300¥d
QIOHANY dIOYANY
8 9~
aI/W3LSAS/ NIG/WILSAS/
ez~

US 9,367,331 B2

Sheet 5 0of 13

Jun. 14, 2016

U.S. Patent

S NGDAXONIT
¥3SN XNNIT
AUV NOW3Va |, AV
snaa snaa snaa
14 99~

4

ONIANIG
SNgagano

HIOVNVYI
304N0S3Y

e~

ONIANIF
sngd vavr

JOIAY3S
V140d

92~

ve-

e~

U.S. Patent Jun. 14,2016 Sheet 6 of 13 US 9,367,331 B2

(START "‘68

Y 70
INITIALIZE CORE KERNEL
Y 72

LAUNCH INIT SCRIPTS

7
LAUNCH RESOURCE MANAGER
Y 76
IDENTIFY MODE STATE
Y 78

REFERENCE MODE STATE CRITERIA

l 80

LAUNCH COMMON SERVICE

82
MOBILE MODE STATE? DOCKED

Y 84 88~ y
LAUNCH 15T INIT SCRIPTS LAUNCH 2VP INIT SCRIPTS

y 86 90~ Y
LAUNCH 2NP INIT SCRIPTS LAUNCH 15T INIT SCRIPTS

92
—»C DEVICE OPERATIONAL
FIG. 6

U.S. Patent Jun. 14,2016 Sheet 7 of 13 US 9,367,331 B2
94 DEVICE OPERATIONAL, 1ST
ENVIRONMENT PRIMARY
¢ 96
MOBILE PC SELECTED
¢ 98
» RESOURCE MANAGER UPDATED
¢ ~100
FIRST ENVIRON. INPUT DISABLED
¢ 102
—(MOBILE PC DISPLAYED
Y Y
UNSOLICITED EVENT }~104 106— USER SOLICITED EVENT
108
»| PORTAL ACTIVITY LOSES FOCUS fee——

'

110

ENABLE INPUT FLOW

UNSOL. EVENT/HOME 172
EVENT? BACK

'

114 116~

PORTAL ACTIVITY
BACKGROUNDED

l

UNSOL.

PORTAL ACTIVITY EXITS

HOME

FOCUS

EVENT 120
FIRST ENVIRON.
INTERRUPTION

l 122
|| EXIT/PORTAL REGAINS

FiG. 7

U.S. Patent Jun. 14,2016 Sheet 8 of 13 US 9,367,331 B2
28 34
PORTAL RM (MAIN)
RR
ANDROID
INTENLAUNCH |- LAUNCH PORTAL
PORTAL ___|-DISABLE INPUT
)
124
STATESET(FB_OWNER, UBUNTU)
] » SWITCH FB
126 24
UBUNTU
FHOWNER (UBUNTU)
]
)
128
PORTAL COVERED | ENABLE INPUT
) .
130 STATESET(FB_OWNER, ANDROID)
) » SWITCH VT
182 22
ANDROID
FbOWNER (ANDROID)
-]
28 134 3
PORTAL RM (MAIN)

FiG. 8

U.S. Patent

FIG. 9

Jun. 14, 2016 Sheet 9 of 13 US 9,367,331 B2
MOBILE MODE 1ST
ENVIRONMENT 136
¢ 138
DEVICE DOCKED
¢ 140
DEVICE STATE UPDATED
¢ 142
FIRST ENVIRONMENT DISABLED
¢ 144
SHARED MEMORY SWITCH
¢ 146
SWITCH VIRTUAL TERMINAL
148
MOBILE PC IN VIEW? YES
N0 l A150
PORTAL ACTIVITY EXITS
152
ENABLE DOCKED MODE e«
¢ A154
DEVICE STATE CHANGE
¢ 156
DEVICE STATE UPDATED
¢ 158
FIRST ENVIRON. INPUT ENABLED
¢ 160
FRAMEBUFFER SWITCH
¢ 162
VIRTUAL TERMINAL SWITCH

US 9,367,331 B2

Sheet 10 of 13

Jun. 14, 2016

U.S. Patent

MIY (a1HD) WY (NIVI) WY TV.LHOd
98- e re- gz~
g \/
vl (03%000) IA0N WALSAS
aaooda
i~
Ava_ooo-moo_\,_-_\,_Eva 138 31VIS
04~)|
NLNNEN ¥ANMO €4
LA HOLIMS |ee — — 89~
(NINNEN ¥3INMO g4) L3S ALVLS
9N o gynvwasn-
(@IN00Q SNVHL) IAON WILSAS 10dNI
NIV 378vSId -
@3aMo0d SNvHL
P9I~ il
a3nonid 31gvo
190N
MIY (@1HD) WY (NIVI) WY V18O0d
98- e re- gz~

US 9,367,331 B2

Sheet 11 of 13

Jun. 14, 2016

U.S. Patent

MIV (@HD) WY (NIVI) WY TV.LH0d
98- N4 re- 8z~
ONINNNY |)
11 1IX3 981~ (37190M) IAOW WIALSAS
31190N
< r8l~
(37190 3A0OW W3LSAS) L3S 31VIS
28~
(QI0YANY) ¥aNMO 84
LAHOLIMS b _ _ 08/~
(QI0¥ANY ¥3NMO 84) L3S JLVIS
84N ol ginwwasn-
(31190 SNVY.L) JAOW WALSAS 10dNI
L NIV 319YN3 -
G0N SNV
94~ .
a3nonid 31gvo
aanooda
MIV (@1H) Wy (NIVA) WY V18O0d
98- N4 v~ 8z2-

U.S. Patent Jun. 14,2016 Sheet 12 of 13 US 9,367,331 B2
(oo™ =
¢ C 190\ . J ¢ ~192
UNSOLICITED
INTERRUPTING EVENT 194 AIW SELECTED
-
L AIWLAUNCHED fe———
! 196
1ST ENVIRON. INPUT
ENABLED
¢ 198
TRANSMIT 1ST ENVIRON.
UPDATES
¢ 200
’(AIW ENABLED \
02 (IN FOCUS))} ¢ iy
USER EXIT AIW e« USEFRR gIEAMI%VCI:EUSSAlw
206
| | 1STENVIRON.INPUT
ENABLED —
* 208
1ST ENVIRON. DISPLAY
STOPPED
EXIT
DEFOCUSED 212
BN)
¢ i - =0 J ¢ 216
UNSOLICITED
INTERRUPTING EVENT AIW RESUMED
28
L »{ AWREFOCUSED |je———
* 220
1ST ENVIRONMENT
ENABLED INPUT
* 222
1ST ENVIRONMENT
DISPLAY UPDATES FIG. 12

US 9,367,331 B2

Sheet 13 of 13

Jun. 14, 2016

U.S. Patent

§1 'DIA

08¢

&

©

DI ndzee oy | ~WI0340 | aiodany O "Nim v NI aiodanva]~ziniNnen@svavio | [10 @O &
3Noa
<] | D]
I 1 I 1
ToudFounoshado) | swadomnaa | | LDRIVIN)
|| 3 @ a 3 b})
<<
) . HOW NV _ o) % .@.
=5 NMO dOA HSTENd
& RS | pleep S £ T
PLApGIZ-Lve-L
SNOILVOITddV dOL 3HL 335 O o

0

(o]

\.

TIVO ONINOONI

J

Wy ile B[N E

Lod [

XIEE MOAONIMY NI dIOHANY

i |28]gtR

cloecuD

(codanvsiivim | woodwiaaw | 13www | 3woH

A

282

CloeCUDb

SIANMAY3H LS31v1 B dILMVIS ONILLIOD d3LISIA LSOWD]

[0 319009 ~D) (<] OO TIOHINY MWWELIATE) BB ® @ ~ @ ®

o]

dT3H S100L SHYYWM00E AMOLSIH M3IIA Lia3 3114

XOoE

X043dId VTIIZOW - 3LISEIM TVIDIHHO0 | QIOHANY €

US 9,367,331 B2

1
MULTI-ENVIRONMENT OPERATING
SYSTEM

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application claims the benefit of each of U.S. Provi-
sional Patent Application No. 61/226,955, titled “System and
Method for Switching Between Environments in a Multi-
Environment Operating System” and filed on Jul. 20, 2009;
U.S. Provisional Patent Application No. 61/226,974, titled
“System and Method for Initiating a Multi-Environment
Operating System” and filed on Jul. 20, 2009; U.S. Provi-
sional Patent Application No. 61/226,988, titled “Multi-En-
vironment Operating System” and filed on July 20, 2009; and
U.S. Provisional Patent Application No. 61/291,269, titled
“Multi-Environment Operating System” and filed on Dec. 30,
2009.

BACKGROUND OF THE INVENTION

Operating systems are designed and typically optimized
based on specific applications and user desired performance.
It is often desirable to have applications of one type of oper-
ating system available to another operating system.

General-purpose computer operating systems such as
Linux™ and Windows™ have an extensive set of features
such as file systems, device drivers, applications, libraries,
etc. Such operating systems allow concurrent execution of
multiple programs, and attempt to optimize the response time
(also referred to as latency time), and CPU usage, or load,
associated to the servicing of the concurrently executing pro-
grams. Unfortunately, however, such operating systems are
not generally suitable for embedded real-time applications,
such as for mobile computing devices. Under certain circum-
stances it would be desirable for a mobile computing device
to have the performance associated with a mobile-specific
embedded operating system and features of a general-pur-
pose operating system.

Linux, for example, is a well known general purpose desk-
top operating system with many desirable features for mod-
ern devices including modern operating systems features,
numerous development tools, networking, etc. However,
Linux was not designed to be an embedded or real time
operating system. Many modern devices, such as, without
limitation, set top boxes, mobile phones and car navigation
systems require not only the features of a general purpose
operating system such as Linux, but also the features of an
embedded or real time operating system, including real time
performance.

Given that Linux-based operating systems offer some ben-
efits but that other types of operating systems offer other
benefits, particularly in the context of certain types of devices
such as mobile devices, it would be desirable if somehow
multiple operating systems could be implemented on a single
device so that the benefits of each different type of operating
system could be achieved in relation to that device. Running
multiple operating systems on a single device has been
accomplished through virtualization techniques, such as (for
example) found in VMware™, VirtualBox™, QEMU™,_ etc.
However, when using virtualization a complete computer is
emulated and one or more software stacks are operated in the
emulated computing device. Emulation is wrought with high
overhead costs, and consequently conventional virtualization
techniques are often impractical, especially again in the con-
text of certain types of devices such as mobile devices.

10

15

20

25

30

35

40

45

50

55

60

65

2

In view of the foregoing, there is a need for a new type of
operating system implementation by which the benefits of
multiple distinct operating systems can be achieved with less
overhead costs than would otherwise be the case using con-
ventional virtualization techniques.

BRIEF SUMMARY OF THE INVENTION

In accordance with at least one embodiment of the present
invention, a method for booting a device having at least two
co-existing independent operating environments includes ini-
tiating a start-up boot sequence, initializing a core kernel,
identifying that the device is docked, launching services com-
mon to a first operating system and a second operating sys-
tem, selecting a primary operating system based at least in
part upon identifying that the device is docked, launching
initializing scripts of a personal computing primary operating
system, and launching initializing scripts of a secondary
mobile operating system.

According to another embodiment of the invention, a
method for initializing an operating system, includes initial-
izing a boot sequence, selecting at least two operating system
environments for operating a mobile device, the at least two
operating system environments are configured to be indepen-
dent and co-exist while the device is operational, launching a
common Linux-based kernel, launching application services
common to a first operating system environment and a second
operating system environment, selecting the a primary and
secondary operating system environment based at least in part
upon a mode state of the device, and simultaneously launch-
ing initializing scripts for the primary and secondary operat-
ing system environments, wherein the second operating sys-
tem environment is the primary environment, and the second
operating system is the primary operating system when the
mode state is docked mode.

According to yet another alternative embodiment, a
method for operating a device having multiple co-existing
operating environments, includes initiating a boot sequence,
configured to simultaneously launch two operating system
environments, identifying the mode state of the device,
selecting a primary operating environment based at least in
part upon the mode state, and changing the primary operating
environment based at least in part upon a change in the mode
state of the device, wherein the mode state changes from a
mobile mode to a docked mode when the device is docked in
a dock associated with peripheral devices.

In accordance with an alternative embodiment, a memory
storage unit coupled to a computer processor, the memory
storage unit having computer executable instructions capable
of operating at least two operating system environments on a
common kernel, wherein a second operating system environ-
ment is optimized for desktop communication and wherein
the primary operating environment is switched from the first
operating system to the second operating system when a user
connects the device to a peripheral device.

According to another embodiment of the invention, a
mobile telephone comprises a graphical user interface con-
figured to receive and transmit multimedia information, a
computing system comprising a processor coupled to a
memory storage unit, a multi-environment operating system
having a common kernel, the memory storage unit having
computer executable instructions capable of managing
resources shared between at least two co-existing indepen-
dent operating system environments, wherein a Linux-based
system is a primary operating environment while the tele-
phone is connected to a peripheral device.

US 9,367,331 B2

3

According to yet another embodiment of the invention A
mobile computing device includes a computer processor
coupled to a computer memory having computer executable
instructions configured to initiate an operating system, and an
operating system configured to simultaneously run a standard
Linux distribution operating system environment and an
Android operating system environment on a single kernel,
wherein a predetermined device state dictates a primary and
secondary operating environment, and wherein the Linux
distribution is the primary operating environment when the
device is operating in a desktop mode.

According to still another embodiment of the invention, a
method for operating a device having a kernel, a first envi-
ronment with first middleware, and a second environment
with second middleware, wherein each of the environments
interfaces the kernel, including initializing the kernel, identi-
fying a device mode state, launching services common to
each of the first environment and the second environment,
determining one of the first and second environments as being
a primary environment based at least in part upon the mode
state, and launching initializing scripts for each of the firstand
second environments, wherein the first middleware of the first
environment is configured to interpret application code at
run-time with a byte-code interpreter, and the second middle-
ware of the second environment is configured to execute a
pre-run-time-compiled application, wherein the event that is
determined to have occurred is a docking of the device in
relation to another device, and wherein the switching from the
one environment to the other environment involves a switch-
ing between a first focus pertaining to the pre-run-time com-
piled application and a second focus pertaining to another
application based upon the interpreted application code.

According to another embodiment, a method of switching
from a first operating environment to a second operating
environment of a mobile device includes initiating at least two
co-existing independent middleware operating environments
coupled to a core kernel, the middleware operating environ-
ments each having a corresponding application component,
receiving a mode state initialization change signal based at
least in part upon the device operation, releasing first operat-
ing environment control of the device, and initiating second
operating environment control of the device, wherein the first
operating system operates the device in a mobile mode and
the second operating environment operates the device in a
docked mode.

BRIEF DESCRIPTION OF THE DRAWING

FIG. 1 is an exemplary perspective view of a mobile
device;

FIG. 2 is a block diagram representing in schematic form
exemplary components of the mobile device of FIG. 1,
including an exemplary operating system that has multiple
environments;

FIGS. 3-5 are block diagrams representing in schematic
form certain additional exemplary components (and, in FIG.
4, processes) of the mobile device of FIG. 1 not entirely
shown in FIG. 2 including, with respect to FIG. 4, ones
pertaining to an exemplary run-time co-existence schema
and, with respect to FIG. 5, ones pertaining to an inter-envi-
ronment communication schema;

FIG. 6 is a flow chart showing steps of an exemplary
booting sequence for the operating system of FIG. 2;

FIG. 7 is a flow chart showing steps of an exemplary
process for launching an application in a first environment of
the operating system of FIG. 2 while there is simultaneous
operation of a second environment of that operating system;

10

15

20

25

30

35

40

45

50

55

60

4

FIG. 8 is a message sequence chart showing exemplary
steps for launching an application in the second environment
of'the operating system of FIG. 2 while a first environment of
that operating system has primary control;

FIG. 9 is a flow chart showing steps of an exemplary
process for switching from a first environment of the operat-
ing system of FIG. 2 to a second environment of that operat-
ing system;

FIGS. 10-11 are message sequence charts showing steps of
exemplary processes for switching from a first environment
of'the operating system of FIG. 2 to a second environment of
that operating system;

FIG. 12 is a flow chart showing steps of an exemplary
process for using an application controlled by a first environ-
ment of the operating system of FIG. 2 while a second envi-
ronment of that operating system has primary control; and

FIG. 13 shows an exemplary monitor with a display screen
showing exemplary windows that can be displayed as a result
of performing of the process of FIG. 12.

DETAILED DESCRIPTION

It is envisioned that it would be advantageous to have an
operating system including both a first application-middle-
ware environment and a second application-middleware envi-
ronment that each communicate directly with a single kernel
running directly upon a computing device’s hardware. In at
least some embodiments, one or both of the first and second
application-middleware environments are Linux-based
application-middleware environments. Also, in at least some
embodiments, one or both of the first and second application-
middleware environments are embedded. In one exemplary
embodiment, each ofthe first and second application-middle-
ware environments is an embedded Linux-based application-
middleware environment, and both of the application-
middleware environments communicate directly with a
single Linux kernel running directly upon a computing
device’s hardware (e.g., the hardware of a mobile device).

Referring to FIG. 1, a mobile device 10 is provided. The
mobile device 10 includes a graphical user interface (GUI) 12
and a plurality of data input buttons 14. The mobile device 10
is selected from the group including, but not limited to, a
mobile personal computer (PC), a netbook, a mobile tele-
phone, a laptop computer, a handheld computer and a smart
phone. Although the device 10 is mobile, it is intended to have
significant computing power, with a processor speed in
excess of 500 MHz, although slower processors are not
excluded. Considering the computing power, a user can con-
nect the mobile device 10 to a variety of peripheral devices
(notshown). The peripheral devices are selected from a group
including, but not limited to, computer monitor, a laptop
computer, a desktop computer, a tablet PC, a screen projector,
a docking station, a television monitor, etc.

Alternatively, the mobile device can include a variety of
added functionality. Additional features can be based upon
the particular environments that are selected for the device.
By example, a compass function can be provided for orien-
tation, an accelerometer function can be provided, in addition
to telephony, Bluetooth and WiFi stack for connectivity key-
board and touch screen function for enhanced interaction.

Now referring to FIG. 2, a block diagram is provided show-
ing in schematic form particular components of the mobile
device 10 of FIG. 1. As shown, the mobile device 10 of FIG.
1 includes a GNU/Linux distribution or operating system
(OS) 15 in communication with device hardware 20 as indi-
cated by an arrow 11. Further as shown, the GNU/Linux OS
15 more particularly includes a Linux kernel 18 and a Linux

US 9,367,331 B2

5

user component 16 that are in communication with one
another as indicated by an arrow 13. The Linux user compo-
nent 16 is further shown to include a first application-middle-
ware environment 22 and a second application-middleware
environment 24 (hereinafter, the respective first and second
application-middleware environments will more simply be
referred to as the first and second environments, respectively).
More particularly, as further indicated by arrows 17 and 19,
respectively, each of the first and second environments 22 and
24, respectively, of the Linux user component 16 is in com-
munication with the single Linux kernel 18. In the present
embodiment, the first environment 22 is an embedded envi-
ronment intended for use in mobile devices, namely, an
Android™ environment (additional description regarding
Android can be found www.openhandsetalliance.com, the
website of the Open Handset Alliance, which is hereby incor-
porated by reference herein), while the second environment
24 is a standard GNU/Linux environment. In addition to the
environments 22, 24 being capable of communications with
the Linux kernel 18, those environments are also capable of
communications with one another, as represented by an arrow
21.

As will be described in further detail below, it is specifi-
cally intended that multiple environments 22, 24 can operate
and co-exist independently of one another. This is not to say
that the two environments 22, 24 are absolutely operationally
independent in all respects. Indeed, to the extent that both
environments 22, 24 interact with and compete for resources
of'the Linux kernel 18, the two environments are interdepen-
dent in that respect. Likewise, to the extent that the two
environments 22, 24 are in communication with one another
(e.g., as represented by the arrow 21), the two environments
can operate in conjunction with one another in that manner as
well. Nevertheless, for purposes of the present explanation,
the two environments 22, 24 are considered “independent” in
the sense that each of the environments is capable of operat-
ing by itself even if the other of the environments was not
present (and, indeed, each of the environments can be opera-
tionally independent before simultaneous implementation of
both of the environments upon the same Linux kernel 18).
Additionally, in at least some embodiments, the two environ-
ments 22, 24 can also be considered “independent” insofar as
each of the two environments is of a different type (e.g.; in
terms of being embedded, etc.) and correspondingly serves
different purposes in terms of the operations it performs and
the functions it can achieve vis-a-vis the Linux kernel 18, the
device hardware 20, and the outside world (e.g., users and/or
other devices).

Although shown to be a GNU/Linux OS 15 with the Linux
kernel 18 and Linux user component 16, the present invention
is intended to encompass alternate embodiments in which
other types of operating systems, kernels, and other operating
system components are employed, and the present invention
is not intended to be limited only to Linux-based systems.
Likewise, notwithstanding that in the present embodiment the
first environment 22 is the Android environment and the
second environment 24 is the standard GNU/Linux environ-
ment, in other embodiments, other environments can be
employed instead of the Android environment. Depending
upon the embodiment, such other environments can be but
need not be embedded environments, and/or can be but need
not be suitable for use in mobile devices. Also, depending
upon the embodiment, environments and/or operating sys-
tems that operate in real time or do not operate in real time can
be employed. Further, while two environments 22, 24 are
shown in FIG. 2, the present invention is intended to encom-
pass additional embodiments in which more than two envi-

20

25

30

40

45

6

ronments are present (and can operate and co-exist indepen-
dently of one another, where the manner of independence of
the environments is as described above).

Still referring FIG. 2, in at least the present embodiment in
which the first environment 22 is the Android environment
and the second environment 24 is in accordance with the
standard GNU/Linux distribution, those environments can
more particularly encompass several software components as
shown. With respect to the first (Android) environment 22,
that environment includes applications 2 (e.g., user applica-
tions), which are in the Dalvik language, and middleware 3,
with the applications and middleware being bundled together.
The middleware 3 as shown includes an Android application
framework 4 and Android run-time programming 5. Although
not shown, in at least some embodiments, the middleware 3 of
the first environment 22 can also include other components,
for example, a radio interface layer, and/or components
allowing for global positioning system (GPS) functioning. In
some embodiments, the middleware 3 (or portions thereof) is
released under an Apache license. As for the applications 2,
these applications are managed by the Android application
framework 4 and interpreted in the Android run-time pro-
gramming 5 (more particularly, an interpreter established by
the run-time programming translates the applications at run-
time). The applications 2, which can be understood to include
stacks and other application software components, are sepa-
rate from one another and include computer instructions that
are recognizable by the middleware 3 atop which the appli-
cations 2 are juxtaposed.

The Android run-time programming 5 in particular makes
use of a Dalvik register-based virtual machine (VM) as well
as Dalvik libraries and tools. The VM interacts with the Dal-
vik libraries and tools, as well as with other components such
as the Linux kernel 18. The Dalvik (Android implemented)
libraries are proprietary libraries that are implemented on top
of Linux kernel 18. The functionality implemented by way of
the Dalvik libraries is sufficient to run the Dalvik VM, but are
based on a subset of the libraries supported by GNU/Linux.
The Dalvik register-based virtual machine (including the
Dalvik language) is employed in the present embodiment
because it has been optimized for implementation in mobile
devices. Dalvik was conceived as an instrument to enable a
large population of Java programmers to easily develop appli-
cations on relatively computationally-weak (compared to
personal computers) mobile devices. Java is not the same as
Dalvik. In particular, register-based virtual machines such as
that provided by Dalvik are easier to optimize than stack-
based architectures such as the Java virtual machine on a
particular set of hardware. Also, Android/Dalvik replicates a
complete middleware layer, rather than merely a byte-code
interpreter (VM) as does Java. Nevertheless, while Dalvik is
not Java, Dalvik and Java share a common syntax so that
programmers can easily adapt their skills to develop Dalvik
applications. Thus, although the applications 2 operated by
the middleware 3 (and particularly by the Android run-time
programming 5) are Dalvik-interpreted applications rather
than Java-interpreted applications, the applications 2 are
similar to Java-interpreted applications in that they are byte-
code-interpreted applications.

As for the second (GNU/Linux) environment 24, that envi-
ronment includes its own applications 6 (e.g., user applica-
tions) coupled to middleware 7, with the middleware includ-
ing both a GNU application framework 8 and GNU libraries/
tools 9. The libraries/tools 9 can include a variety of
components including, for example, libraries such as QT
(Quicktime) or GTK (GIMP Toolkit) libraries useful for the
display of information on a GUI, as well as other libraries/

US 9,367,331 B2

7

tools discussed in further detail below. Although not shown,
the middleware 7 can include numerous other types of par-
ticular software components including, for example, one or
more desktop environments such as GNOME, Enlighten-
ment, Xfce, Fluxbox, LXDE and KDE, and/or a Gstreamer
multimedia framework, and/or a X11 Window manager. As
for the applications 6, these more particularly can be native
applications in the sense that the executable code of those
applications correspond to the instruction set architecture of
the Linux kernel 18 and/or the device hardware 20. As with
the applications 2, each of the applications 6 can also be
understood to include its own respective stacks and other
application software components that are separate from those
of'the other applications 6, and include computer instructions
that are recognizable by the middleware 7 atop which the
applications 6 are juxtaposed. In embodiments where the
middleware 7 includes one or more of the software compo-
nents discussed above (e.g., the aforementioned desktop envi-
ronments), one or more of the applications 6 can be coupled
to those components of the middleware.

In the present embodiment, the second environment 24 in
combination with the Linux kernel 18 more particularly takes
the form of an Ubuntu® Linux stack (additional description
regarding Ubuntu can be found at www.ubuntu.com, spon-
sored by Canonical Ltd. of the United Kingdom, which is
hereby incorporated by reference herein). For simplicity of
description below, the second environment 24 is hereinafter
referred to as an Ubuntu environment (albeit Ubuntu techni-
cally also encompasses that Linux kernel as well as the envi-
ronment 24). In the present embodiment, the second environ-
ment 24 (and particularly the middleware 7 of that
environment) additionally is capable of supporting a multi-
plicity of logical memory (data) partitions, while the first
environment 22 only has a single logical memory partition in
addition to providing system components. Notwithstanding
the above description, in alternate embodiments it is possible
that the second environment 24 will only have one logical
memory partition, and/or that one or more other environ-
ments can also or instead be configured to support multiple
logical memory partitions.

Notwithstanding the above description in which the first
environment 22 is an Android environment and the second
middleware system environment 24 is an Ubuntu environ-
ment, a variety of other types of environments can also or
alternatively be employed including, for example, standard
Linux-based environments, Symbian (Symbian Foundation
Ltd., www.symbian.com) environments, and Windows-based
environments (e.g., Windows and Windows Mobile). In at
least some such embodiments, the environments are not
Linux-based environments and correspondingly the environ-
ments can be implemented in conjunction with different types
of kernels other than a Linux-based kernel (this can be the
case, for example, with respect to Symbian or Windows-
based environments as mentioned above). As already noted
above, while the present embodiment particularly envisions
the presence of two environments interacting with the same
Linux kernel 18, in alternative embodiments it is envisioned
that greater than two environments of any of a variety oftypes
can independently co-exist on the same Linux kernel 18 (or
other core/kernel).

The device hardware 20 can include a variety of hardware
devices. For example, the device hardware 20 can include a
memory storage device (not shown) coupled to a processor
(not shown), which stores computer executable instructions
that are configured to perform various functions and opera-
tions, some of which are described herein. Also for example,
the device hardware 20 can in addition (or instead) include

10

15

20

25

30

35

40

45

50

55

60

65

8

any of a variety of other components/resources, such as cel-
Iular Bluetooth and/or WiFi transceivers or radios, keyboards,
other input devices such as a mouse and/or touch screens,
memory sub-systems, audio amplifiers, output devices such
as speakers and/or video screens, hardware accelerators, IP
sockets, etc. The Linux kernel 18 allocates resources of the
mobile device by connecting and managing interaction
between the physical world of the device hardware 20 and the
respective middleware 3, 7 of the environments 22, 24,
respectively. The software components encompassed by the
respective middleware 3, 7 (again, e.g., the application frame-
works 3, 8, run-time programming 5, and/or GNU libraries/
tools 9) are often referred to as the middleware because they
are logically interposed between the kernel and software
applications 2, 6, respectively. The purpose of the respective
middleware 3, 7 is to orchestrate interaction between the
device hardware 20 (physical world) and the applications 2, 6,
respectively.

Turning to FIGS. 3-5, aspects of the components of FIG. 2
are shown in greater detail, in schematic form. Referring to
FIG. 3, the device hardware 20 is again shown to be in com-
munication with the Linux kernel 18 that is in communication
with the Linux user 16, and the Linux user is again shown to
include the first (Android-based) environment 22 and the
second (Linux-based) environment 24. Further as shown, the
kernel 18 particularly includes several modules 43, which
include a set of kernel drivers 42 and an AEV module 44
(which is described in more detail below). Included among
the drivers 42 are device drivers (e.g., input device drivers) for
components of the device hardware 20. Additionally, while
not shown in FIG. 2, FIG. 3 more particularly shows the first
environment 22 as including a portal service module 26, a
portal activity module 28, an Android services module 30,
and an Android applications module 32. The modules 28 and
32 can be considered to be among the applications 2 of the
first environment 22 as shown in FIG. 2, while the modules 26
and 30 can be considered portions of the middleware 3 of that
environment. Also, FIG. 3 more particularly shows the sec-
ond environment 24 as including an arbiter or resource man-
ager 34, an Android in a window (AIW) module 36, and a
Linux services module 40. The modules 34, 36 and 40 can be
considered portions of the middleware 7 of FIG. 2. The appli-
cations 6 of FIG. 2 are additionally shown in FIG. 3 as Linux
applications (potentially the AIW module 36 can also be
considered one of the applications 6).

The various modules 26, 28, 30, 34, 36 and 40 are config-
ured to serve particular functions. The AIW module 36 in
particular is configured to display a first environment appli-
cation window on the GUI 12 while the second environment
24 is the primary environment. The AEV 44, which as men-
tioned above is a kernel module, operates in conjunction with
the AIW module 36 and in particular takes absolute coordi-
nate and keyboard events from AIW 36 and passes them to an
event hub. With respect to the portal service module 26, that
module contains a set of instructions configured to allow
service for the first environment 22 and directs all communi-
cation with the resource manager 34. While the mobile device
10 is operating, the portal service module 26 is preferably
running at all times. Additionally, the portal service module
26 is connected to activity associated with the portal activity
module 28, as well as first environment 22 broadcast events.
As already mentioned, the portal activity module 28 is an
application, or set of computer executable instructions. The
portal activity module 28 more particularly represents a sec-
ond environment 24 application located on the first environ-
ment 22 stack. By example, if the second (Linux-based) envi-
ronment 24 is the Ubuntu environment, the portal activity

US 9,367,331 B2

9

module 28 can represent a specific Ubuntu application, and
when the portal activity module 28 has focus, Ubuntu is in
view through the GUI 12.

Generally speaking, numerous applications can run simul-
taneously, also referred to as a stack of running applications,
within any given environment. Logically speaking, the top-
most application is deemed to have “focus”. Where multiple
applications are available for interaction with a user (e.g.,
where multiple windows corresponding respectively to mul-
tiple applications are shown on a display such as the GUI 12),
that one of the applications which is currently interacting with
the user in terms of being configured to receive input com-
mands or signals from the user at a given time can be consid-
ered the application having “focus.”” Notwithstanding the
above description, in at least some embodiments of the
present invention, while the second environment 24 is
capable of causing the simultaneous display (e.g., on the GUI
12) of multiple windows corresponding to multiple applica-
tions, the first environment 22 does not have this capability.
Rather, in such embodiments, the first environment is only
able to cause the display (e.g., on the GUI 12) of a single
window corresponding to a single application at any given
time.

As discussed above, the co-existing environments 22, 24
within the operating system 16 communicate with each other
as indicated by the arrow 21 and also communicate with the
same Linux kernel 18 as indicated by the arrows 13,17 and 19
of FIG. 2. Because (also as noted above) Android/Dalvik
replicates a complete middleware layer, rather than merely a
byte-code interpreter (VM) as does Java, absent the taking of
appropriate steps there is a possibility of conflict in the opera-
tion of the middleware 3 and the middleware 7 of the first and
second environments 22 and 24, respectively, in terms of the
allocation of resources/physical assets controlled through the
Linux kernel 18. To avoid such conflicts, the resource man-
ager 34, which is part of the second environment 24, commu-
nicates directly with the portal service module 26, which is
part of the first environment 22. Further, the portal service
module 26, which is part of the first environment 22, commu-
nicates directly with the resource manager 34. The resource
manager 34 is a set of instructions configured to manage the
resources shared by the first environment 22 and second envi-
ronment 24. The shared resources include display devices,
input devices, power management services and system state
information. Furthermore, the resource manager 34 is con-
figured to control the accessing of the device hardware 20 by
the environments 22, 24. Additionally, the resource manager
34 identifies and controls which user interface associated
with the environments 22, 24 is displayed through the GUI
12.

According to the present embodiment, the portal service
module 26 is the source of all communications from the first
environment 22 to the resource manager 34. Additionally, the
portal service module 26 is a sink for all callbacks from the
resource manager 34 to the first environment 22. The resource
manager 34 provides a status discoverable application pro-
gramming interface (API) to the portal service module 26.
This API is configured to be called by the resource manager
34 at any time. The resource manager 34 is configured to
obtain and process run-time status, which allows for the
resource manager to maintain a state machine. For the first
environment 22, the portal service module 26 provides run-
time status to processes that require them. Similarly, the por-
tal service module 26 requests and receives status updates
from processes which provide status information (for these
reasons, the portal service module 26 can more particularly be
considered part of the Android run-time programming 5 of

20

35

40

45

50

55

10

FIG. 2). A similar communication for the second environment
24 is controlled by the resource manager 34, which provides
run-time status to the processes that require them. The
resource manager 34 requests and receives status updates
from various processes that provide status information. The
drivers 42 logically associated with the kernel 18 communi-
cate directly with the resource manager 34 as well as the
processes that provide run-time status information. By
example, the aforementioned API of the resource manager 34
arbitrates access to user interface devices, such as displays,
touch screens or the GUI 12. In yet another example, this API
arbitrates access to power input devices, such as batteries
and/or AC/DC wall plugs.

As mentioned above, the first environment 22 and the sec-
ond environment 24 are independent from the other in the
manner discussed above, and co-exist with respect to the
other. Each of the environments 22, 24 is a fully-functioning
environment, and does not need the other environment to
function, such that the two environments can be said to exist
on the mobile device 10 with 100% independence with
respect to the other. The first and second environments 22, 24
do not co-exist in a virtualization or emulation scheme, but
rather each of the environments operates on the shared, single
kernel 18. The first and second environments 22, 24 in par-
ticular have run-time co-existence in which both of the envi-
ronments 22, 24 are run as stand-alone, native environments.
Neither of the environments 22, 24 is recompiled, as there is
no need to leverage a common C run-time environment.
Because of the presence of the two environments 22, 24, a
user can access applications 2, 6 that are coded purely for one
or the other of the environments 22, 24, and a user can access
an application that is coded for one of the environments
without an interruption to the user’s computing experience
with respect to the other of the environments.

Referring next to FIG. 4, an additional block diagram
shows in schematic form aspects of the operating system 15
(with the Linux user 16 and Linux kernel 18) by which an
exemplary co-existence scheme for the first (Android) envi-
ronment 22 and the second (Ubuntu) environment 24 is pro-
vided. In general, each of the environments 22, 24 operates on
a separate run-time environment, which provides software
services for programs and/or processes while the mobile
device 10 is operating. More particularly as shown, Android
processes 46 and Android libraries 48 access a Bionic C (or
simply bionic) library 50, which is optimized and modified
specifically for the Android environment. The Android librar-
ies 48 and bionic library 50 can be considered to form part of
the Android run-time programming 5 of FI1G. 2. Additionally
as shown, Ubuntu processes 52 and Ubuntu libraries 54
access a GNU C (glibc) library 56, which is used in many
standard desktop Linux-based systems. The Ubuntu libraries
54 and glibc library 56 can be considered to form part of the
GNU libraries/tools 9 of FIG. 2. Each respective one of the
environments 22, 24 runs on its respective C libraries without
conflicting with the other one of the environments 22, 24.

Referring further to FIG. 5, a more detailed communica-
tion path between the first environment 22 and the second
environment 24 described in FIG. 4 is shown in schematic
form. More particularly, an inter-process communication
(IPC) system is configured to manage the inter-environment
communication flow between the first environment 22 and the
second environment 24. As shown, the portal service module
26 (discussed above with respect to FIG. 3) of the first envi-
ronment 22 communicates with a DBUS binding 58, which in
turn is a software package containing programming language
and executable instructions configured to communicate with
a DBUS library 60, the DBUS binding and DBUS library also

US 9,367,331 B2

11

being components of the first environment 22. Additionally as
shown, the resource manager 34 (also discussed above with
respect to FIG. 3) communicates with a Glib DBUS binding
62, which also is a software package containing programming
language and executable instructions configured to commu-
nicate with a DBUS library 64 configured for the second
environment 24. Both the first environment 22 DBUS library
60 and the second environment 24 library 64 communicate
through a DBUS Daemon 66, which along with the Glib
DBUS library 62 and DBUS library 64 is logically part of the
second environment 24, and which acts as the communication
link between the two environments. All of the components 26,
58 and 60 of the first environment 22 can be conceptually
considered to be part of the middleware 3 of that environment,
while all of the components 34, 62, 64 and 66 of the second
environment 24 can be conceptually considered to be part of
the middleware 7 of that environment.

Referring to FIG. 6, a flow chart shows steps of an exem-
plary boot sequence for the operating system 15 of FIG. 2.
The boot sequence includes both common and environment-
specific steps. The actual boot sequence is dependent upon
rules associated with a predetermined device state of the
mobile device 10 that dictates the booting sequence. By
example, if the mobile device 10 is connected to a peripheral
device, such as a monitor, the device state is considered to be
in docked mode, and the second (Linux-based) environment
24 is the default primary environment. Alternatively, if the
mobile device 10 is not connected to a peripheral device, then
it is in mobile mode, and the first (Android) environment 22 is
the default primary environment. Although in any given mode
of'the mobile device 10 one or the other of the first and second
environments 22, 24 serves as a primary environment, both
environments are launched simultaneously (that is, the sec-
ondary/non-primary environment is launched simultaneously
with the primary environment). Further, once both of the
environments 22, 24 are launched and one of the environ-
ments serves as the primary environment, the secondary envi-
ronment nevertheless still operates in the background relative
to the primary environment, in case the mobile device 10 state
changes and the secondary environment is switched to
become the primary environment. By example, when the
mobile device 10 is in docked mode and the peripheral device
is unplugged, there is an automatic switch to mobile mode,
which results in the secondary environment becoming the
primary environment, and vice versa.

As shown in FIG. 6, the boot sequence is initiated at step
68, followed by the launching/initializing of the Linux kernel
18 (or core) at step 70. In this regard, a bootloader program
initializes prior to the launching of the kernel 18. After the
Linux kernel 18 is launched/initialized, the kernel itself then
launches user space scripts at step 72. The resource manager
34 is further launched at step 74, followed by an identification
of'the mode state at step 76. Once the mode state is identified,
a reference library is accessed at step 78 to determine the
criteria associated with and/or dictated by the mode state that
is identified. At step 80, services common to both the first
environment 22 and the second environment 24 are launched.
The mode state determined at step 76 is subsequently refer-
enced and considered at step 82 and, depending upon the
mode state, different paths are followed.

In this regard, if at step 82 the mobile mode state is refer-
enced, then the first environment 22 should be the primary
environment while the second environment 24 should be the
secondary environment. Consequently, in that circumstance,
first environment 22 initialization scripts are launched at step
84, followed by the launching of second environment 24
initialization scripts at step 86. Alternatively, if the docked

20

25

40

45

50

60

12

mode state is referenced at step 82, then the second environ-
ment 24 should be the primary environment and the first
environment 22 should be the secondary environment. Con-
sequently, in that circumstance, second environment 24 ini-
tialization scripts are launched at step 88, followed by the
launching of first environment 22 initialization scripts at step
90. Following each of the steps 86 and 90, the process in each
case proceeds to step 92 at which the mobile device 10
becomes operational. Thus, regardless of which of the envi-
ronments 22, 24 is the primary environment, both environ-
ments are launched and running before the mobile device 10
is operational at step 92. Indeed, since the common services
are launched first at step 80, for all intents and purposes the
primary and secondary environments are launched in parallel.
However, the primary environment-specific services, based
upon the device state, are launched immediately before the
secondary environment-specific services. By separating the
common services launch with the environment-specific
launch, the mobile device 10 can be quickly operational with
multiple co-existing and independent environments.

Referring to FIG. 7, a flow chart shows steps of an exem-
plary process for launching a second environment 24 appli-
cation (e.g., one of the applications 6) while the mobile device
10 is in the mobile mode and the first environment 22 is the
primary environment and thus has primary control over
operations of the mobile device 10. As shown, the process
begins with the mobile device 10 initially operating with the
first environment 22 as the primary environment at step 94.
Next, at step 96, a second environment 24 application is
selected (e.g., in response to a user command) or otherwise
launched in response to response to a signal or event. The
second environment 24 application can take a variety of forms
depending upon the embodiment; for example, the second
environment 24 application in one embodiment is an appli-
cation referred to as “mobile PC,” which is an application in
the second environment 22 that when operating provides a
full PC view (alternatively referred to as a netbook view)
while the mobile device 10 is operating in the mobile mode
and the first environment 22 is in primary control. In an
alternate embodiment, individual applications from the sec-
ond environment 24 can be listed in a first environment 22
menu and individually launched, which can be similar to a
netbook view.

Still referring to FIG. 7, subsequent to step 96, the portal
service module 26 sends a status update communication to
the resource manager 34 at step 98 indicating that the portal
activity module 28 has gained focus. Thereafter, the resource
manager 34 disables the first environment 22 input and
switches a virtual terminal at step 100. The mobile PC appli-
cation is then displayed on the GUI 12 at step 102. While
operating the mobile PC application an unsolicited event can
occur at step 104 or a user-solicited event can occur at step
106. Unsolicited events include time critical and non-time
critical events. By example, a time critical unsolicited event
includes a phone call or a scheduled or unscheduled alarm.
Further, by example, a non-time critical unsolicited event
includes a short message service (SMS) message, an email
message or a device update notification. After an event occurs
at either of the steps 104 or 106, the portal service module 26
sends a communication to the resource manager 34 indicating
that the portal activity module 28 has lost focus, at step 108.
Next, at step 110, the resource manager 34 requests the first
environment 22 to enable input event flow and switches the
virtual terminal. By example, the present embodiment
includes separate virtual terminals for switching display con-
trol between the first environment 22 and the second environ-
ment 24. Broadly speaking, a virtual terminal is a Linux

US 9,367,331 B2

13

application that allows a system user to switch display con-
trols between Windows-based view and a system console.

Subsequent to step 110, one of several events can occur at
step 112 and, depending upon which of such events occurs,
the process advances in different manners. More particularly,
when anunsolicited event occurs or a user selects the “Home”
key at step 112, the portal activity module 28 is switched to
the background at step 114 while the unsolicited event con-
tinues or the user initiates/operates another application from
the “Home” menu of the GUI 12. Alternatively, if the user
selects the “Back” key at step 112, then the portal activity
module 28 exits the application at step 116 and reverts to the
idle main menu (step 94). Once step 114 has been completed
then it is determined at step 118 whether another event has
occurred. If an event occurs that is an unsolicited event, then
the process advances from step 118 to step 120 in which the
first environment 22 is interrupted. After the environment
interruption at step 120, the interrupting application exits and
the portal activity module 28 regains focus at step 122 and the
mobile device 10 reverts to step 98. Alternatively, if the event
occurring at the step 118 is a solicited event such as user
selection of the “Home” key, then the device reverts to the idle
main menu (step 94). With respect to the above steps, it should
be noted that user-initiated events, such as the selecting of the
Home key or Back key, or the initiating of a new application,
are exemplary solicited events, which are to be contrasted
with unsolicited events.

In an alternative embodiment, the virtual terminal facility
is not utilized. Rendering a second environment 24 applica-
tion while in the mobile mode can be accomplished through a
VNC-like application. The second environment 24 applica-
tion, such as Ubuntu, can be rendered remotely into the VNC
client. Additionally, this embodiment does not take physical
display control away from the first environment 22. Addition-
ally, in yet another alternative embodiment, non time-critical
notifications generated by the first environment 22 are iden-
tified and listed in a panel within the second environment 24
view. By listing the notifications in a panel the first environ-
ment 22 status information is integrated with the second
environment 24 view when the second environment 24 is the
primary environment. At the user’s leisure, the panel is
accessed to reveal non time-critical status notifications. When
the panel is engaged the first environment 22 becomes the
primary environment and allows the notifications to be
viewed. By example, the panel can be a pull-down list that
comes down from a status area with a slide gesture.

Referring next to FIG. 8, a message sequence chart shows
steps of an exemplary process for launching a second envi-
ronment 24 application while the first environment 22 has
primary control. The sequence chart provides a step wise
flow, from top to bottom, of the signals transmitted between
the portal activity module 28 and the resource manager 34. As
shown, the portal activity module 28 receives a signal 124 to
launch the portal and disable the input. The first environment
22 has primary control before signal 126 changes the mode
state such that the second environment 24 obtains primary
control. A signal 126 is sent from the portal activity 28 to the
resource manager 34, which then generates a responsive sig-
nal 128 sent to the portal activity module 28 indicating that
the second environment 24 is the primary environment. Fur-
ther as shown, a signal 130 is received by the portal activity
module 28 and enables the input. A signal 132 is sent from the
portal activity 28 to the resource manager 34 changing the
mode state such that primary environment is switched from
the second environment 24 to the first environment 22. After
receiving the signal 132, the resource manager 34 switches
the virtual terminal. The resource manager 34 then sends a

10

20

25

30

35

40

45

50

55

60

14

status update signal 134 to the portal activity module 28
indicating that the first environment 22 is primary.

Turning to FIG. 9, a flow chart shows steps of an exemplary
process for switching from the first environment 22 to the
second environment 24. The process begins at step 136 with
the mobile device 10 idle in the mobile mode, with the pri-
mary environment being the first environment 22. At step 138
the mobile device 10 is connected to a docking station, or
connected to a peripheral device. By example, an HDMI
connection can be established between the mobile device 10
and a monitor or a television. The resource manager 34 is
notified of the updated connection status at step 140 and the
first environment 22 is disabled at step 142 in response to the
connection status change. The first environment 22 portal
(that is, the portal activity module 28) switches the shared
memory framebuffer at step 144, followed by the resource
manager 34 switching the virtual terminal at step 146. If the
mobile PC application is in view at step 148, then the portal
activity module 28 exits at step 150 and the process advances
to step 152. Alternatively, if the mobile PC application is not
in view, then the process immediately advances from the step
148 to the step 152. At the step 152, the docked mode is
entered and the second environment 24 is correspondingly
enabled.

Next, subsequent to the completion of step 152 and
enabling of the docked mode, it is possible that the state of the
mobile device 10 will change at step 154. By example, the
state of the mobile device 10 changes when a user removes an
HDMI cable, or similar connector, which is used for connect-
ing the mobile device to a peripheral device. In the event that
the device state changes at step 154, then the resource man-
ager 34 receives a status state update at step 156. Following
the receipt of the state update at step 156, the first environ-
ment 22 is enabled at step 158 and the device operates again
in the mobile mode. Next, a framebuffer switch is requested at
step 160 and a virtual terminal switch is requested at step 162,
both of which are performed by the portal activity 26. Fol-
lowing step 162, the mobile device 10 reverts to an idle state
in the mobile mode by returning to step 136.

Referring to FIG. 10, a message sequence chart shows
steps performed during an exemplary process in which the
mobile device 10 transitions from the mobile mode (where
the primary environment is the first environment 22) to the
docked mode (where the primary environment is the second
environment 24). As shown, initially the mobile device 10 is
operating in the mobile mode and the first environment 22 is
the primary environment. A cable signal 164 is received by
the resource manager 34, which indicates that an HDMI or
alternate hardwire plug has been attached to the mobile
device 10 (also as shown, the cable signal 164 can be consid-
ered as being received from a child resource manager 34', as
opposed to the main resource manager 34). The cable signal
164 is an exemplary mode state initialization change signal.
In an alternative embodiment, the plug can be representative
of wireless communication between the mobile device 10 and
a peripheral device, and disabling of such wireless commu-
nication would cause a mode state initialization change signal
to be generated. Subsequent to the signal 164, a sequence of
further signals transitioning the device from the mobile mode
to the docked mode is initiated. In this regard, a signal 166 is
sent from the resource manager 34 to the portal activity mod-
ule 28 indicating a mode status transition and disabling the
main data input. The portal activity module 28 then sends a
signal 168 to the resource manager 34 identifying the second
environment 24 as now being primary and switching the
virtual terminal. Further, a signal 170 is also sent from the
resource manager 34 to the portal activity module 28 identi-

US 9,367,331 B2

15

fying the second environment 24 as the primary environment
that has taken ownership of the framebuffer. Additionally, a
mode state change confirmation signal 172 is sent from the
portal activity module 28 to the resource manager 34 identi-
fying that the mobile device 10 is now in the docked mode and
that the second environment 24 is the primary environment. A
system mode update signal is then also sent from the resource
manager 34 to the AIW 36.

Referring to FIG. 11, an additional message sequence chart
shows steps performed during an exemplary process in which
the mobile device 10 transitions from the docked mode
(where the primary environment is the second environment
24) to the mobile mode (where the primary environment is the
first environment 22). As shown, a cable signal 176 is received
by the resource manager 34, which indicates that an HDMI or
alternate hardwire plug has been removed from the mobile
device 10 (also as shown, the cable signal 176 can be consid-
ered as being received from a child resource manager 34', as
opposed to the main resource manager 34). Removal of the
plug indicates that a peripheral device (not shown) is no
longer in communication with the mobile device 10. In an
alternative embodiment, the plug can be representative of
wireless communication between the mobile device 10 and a
peripheral or alternate device (not shown), and enabling of
such wireless communication would cause a mode state ini-
tialization change signal to be generated. Subsequent to the
signal 176, a sequence of further signals transitioning the
device from docked mode to mobile mode is initiated. In this
regard, a signal 178 is sent from the resource manager 34 to
the portal activity module 28 indicating a mode status transi-
tion and enabling the main data input and the main frame-
buffer. The portal activity module 28 then sends a signal 180
to the resource manager 34 identifying the first environment
22 as now being primary and switching the virtual terminal.
Further, a signal 182 is sent from the resource manager 34 to
the portal activity module 28 identifying the first environment
22 as the primary environment that has taken ownership of the
framebuftfer. Additionally, a mode state change confirmation
signal 184 is sent from the portal activity module 28 to the
resource manager 34 identifying that the mobile device 10 is
now in the mobile mode and that the first environment 22 is
the primary environment. A system mode update signal is sent
from the resource manager 34 to the AIW 36.

Turning to FIG. 12, a further flow chart shows steps of an
exemplary process for using an application controlled by a
first environment of the operating system of FIG. 2 while a
second environment of that operating system has primary
control. As shown, the process begins at step 188 at which the
mobile device 10 is idle in the docked mode such that the
second environment 24 is the primary environment. Then, if
an unsolicited event occurs at step 190 or the user selects the
first environment 22 in a window application at step 192, then
the first environment 22 in a window application is launched
at step 194. By example, assuming that the first environment
22 is Android-based as discussed above, then the ATW mod-
ule (or application) 36 is launched. The AIW module 36
enables a user to access the Android applications 32 (see FIG.
3) while the device is operating in the docked mode. The
resource manager 34 is also notified of the status update at
step 194. Subsequently, at step 196, input to the first environ-
ment 22 is enabled and further, at step 198, a transmission of
first environment display update notifications occurs. The
AIW module 36 thus is operating and has focus at step 200.

Referring additionally to FIG. 13, an exemplary computer
monitor 230 is shown, on which are displayed exemplary
windows that can appear due to the operation of the mobile
device 12 in accordance with the steps 188-200 discussed

10

15

20

25

30

35

40

45

50

55

60

65

16

above. For purposes of the present example, it can be assumed
that the monitor 230 is an additional device with which the
mobile device 12 is docked (in some cases, the monitor can be
part of or associated with a computer such as a PC with which
the mobile device 12 is docked). More particularly as shown,
due to operation in the docked mode in accordance with the
step 188, a primary window 232 generated by a correspond-
ing application of the second environment 24 is displayed on
the monitor 230. Notwithstanding the display of the primary
window 232, the monitor 230 is also shown to display a
secondary window 234, which is an AW window. The sec-
ondary window 234 appears in response to the occurrence of
an unsolicited event at the step 190, which in the present
example is the detection by the mobile device 12 of an incom-
ing phone call to the mobile device. Due to the unsolicited
event, at the step 194 the ATW module 36 is launched and the
additional steps 196-200 are performed such that, corre-
spondingly, the secondary window is generated. At the step
200, the secondary window 234 is in focus, rather than the
primary window, that is to say, the focus has changed from the
primary window to the secondary window as a result of the
performing of the steps 190 and 194-200.

Again particularly with respect to FIG. 12, upon reaching
step 200, it is subsequently possible that the AIW module 36
will be exited or that a user will remove the ATW module from
focus. If the ATW module 36 is exited at step 202 or a user
removes AIW from focus at step 204, then in either case the
first environment 22 input is disabled at step 206 and addi-
tionally the first environment 22 display is stopped at step
208. Subsequently, at step 210 it is again considered whether
the AIW module 36 was exited at step 202 or a user removed
the AIW from focus at step 204. If the AIW module 36 was
exited at step 202, then following step 210 the mobile device
10 reverts to the idle docked mode by returning to step 188.
Thus, with respect to the example shown in FIG. 13, the
secondary window 234 disappears and the primary window
232 remains and regains focus. Alternatively, if the ATW
module 36 was merely defocused, then the AIW module 36
continues to operate at step 212 in this defocused state. In this
case, with respect to the example shown in FIG. 13, both the
primary window 232 and the secondary window 234 remain
displayed on the monitor but it is the primary window 232
which has focus.

While the AIW module 36 and correspondingly the sec-
ondary (AIW) window 234 is defocused, it is still possible for
auser to select the ATW module and continue interaction with
the ATW window, so as to refocus the AIW module (and notify
the resource manager 34 of any status update), as well as
possible for unsolicited interrupting events to occur that may
precipitate a refocusing of the ATW module. Thus, as shown,
once the AIW module 36 is operating in the defocused state,
if either an unsolicited event occurs that interrupts the opera-
tion of the AIW module 36 at step 214 or a solicited interac-
tion with the ATW module 36 occurs at step 216, then in either
case the AIW module 36 subsequently regains focus at step
218. After the AIW module 36 regains focus, the first (An-
droid) environment 22 input is enabled at step 220 and also
the first environment display update notifications are trans-
mitted to the resource manager 34 at step 222. After step 222,
the mobile device 10 reverts to step 200, where the AIW
module 36is enabled and in focus. As mentioned above, when
an application is in focus, that application is at the logical top
of a stack of running applications.

Thus, in accordance with at least one embodiment, a
mobile device operating system having a core kernel config-
ured to interface a device hardware component and a middle-
ware component is provided. The system includes at least two

US 9,367,331 B2

17

co-existing independent middleware operating environments
coupled to the core kernel, the middleware operating envi-
ronments each having a corresponding application compo-
nent.

According to another embodiment, a mobile computing
device having a memory storage unit coupled to a computer
processor is provided. The memory storage unit includes
computer executable instructions capable of operating at least
two operating system environments on a common kernel

According to yet another alternative embodiment, amobile
telephone having a graphical user interface configured to
receive and transmit multimedia information is provided. The
telephone includes a computing system with a processor
coupled to a memory storage unit, and a multi-environment
operating system having a common kernel. The memory stor-
age unit includes computer executable instructions capable of
managing resources shared between at least two co-existing
independent operating system environments.

In accordance with an alternative embodiment, a mobile
computing device with a computer processor coupled to a
computer memory having computer executable instructions
configured to initiate an operating system. The device also
includes an operating system configured to simultaneously
run a standard Linux distribution operating system environ-
ment and an Android™ operating system environment on a
single kernel.

According to yet another alternative embodiment, amobile
device operating system having a core kernel configured to
interface a device hardware component and a middleware
component. The device also includes a first independent
middleware operating environment configured to run JAVA-
interpreted applications and coupled to the core kernel, and a
second independent middleware operating environment con-
figured to run native applications and coupled to the core
kernel.

In accordance with at least one embodiment, a method for
booting a device having at least two co-existing independent
operating environments is provided. The method includes
initiating a start-up boot sequence, initializing a core kernel,
identifying a device mode state, launching services common
to a first operating system and a second operating system,
selecting a primary operating system based at least in part
upon the mode state and launching initializing scripts of the
primary operating system; and launching initializing scripts
of a secondary operating system.

In an alternative embodiment, a method for operating a
device having multiple co-existing operating environments is
provided. The method includes initiating a boot sequence
configured to simultaneously launch two operating system
environments, identifying the mode state of the device and
selecting a primary operating environment based at least in
part upon the mode state.

In yet another embodiment, a mobile device operating
system having a core kernel configured to interface a device
hardware component and a middleware component is pro-
vided. The system includes at least two co-existing indepen-
dent middleware operating environments coupled to the core
kernel, the middleware operating environments each having a
corresponding application component.

According to another embodiment, a mobile computing
device having a memory storage unit coupled to a computer
processor is provided. The memory storage unit includes
computer executable instructions capable of operating at least
two operating system environments on a common kernel

According to yet another alternative embodiment, amobile
telephone having a graphical user interface configured to
receive and transmit multimedia information is provided. The

10

15

20

25

30

35

40

45

50

55

60

65

18

telephone includes a computing system with a processor
coupled to a memory storage unit, and a multi-environment
operating system having a common kernel. The memory stor-
age unit includes computer executable instructions capable of
managing resources shared between at least two co-existing
independent operating system environments.

In accordance with an alternative embodiment, a mobile
computing device with a computer processor coupled to a
computer memory having computer executable instructions
configured to initiate an operating system. The device also
includes an operating system configured to simultaneously
run a standard Linux distribution operating system environ-
ment and an Android™ operating system environment on a
single kernel.

According to yet another alternative embodiment, a mobile
device operating system having a core kernel configured to
interface a device hardware component and a middleware
component. The device also includes a first independent
middleware operating environment configured to run JAVA-
interpreted applications and coupled to the core kernel, and a
second independent middleware operating environment con-
figured to run native applications and coupled to the core
kernel.

From the above description, it should be evident that the
capabilities and operational characteristics of different envi-
ronments such as the first and second environments 22, 24 can
be particularly tailored for the applications and functions
those environments are intended to serve. In the present
embodiment, in this regard, the first (Android) environment
22 has special characteristics that are particularly suited for
mobile device functionality while the second (Linux-based)
environment 24 does not have such characteristics tailored in
this manner to such an extent. For example, given some of the
limitations associated with mobile device displays in com-
parison with other types of displays (e.g., desktop computer
displays), and given that the first environment 22 in the
present embodiment is particularly tailored for facilitating
mobile device operation while the second environment 24 is
not tailored for such purposes to such an extent, in the present
embodiment the second environment (and particularly the
middleware 7 of that environment) supports either a greater
number of display resolutions or higher-level display resolu-
tions than the first environment (and its middleware 3).

Additionally, given the limited CPU power available in
many mobile devices, achieving sufficiently high processing
speeds is often of concern in the design and implementation
of the mobile devices. Use of the Android environment as the
first environment 22 as discussed above is appropriate for
such mobile devices given such concerns and the operational
circumstances often faced by mobile devices. In particular,
because the Android environment generally includes a cus-
tom library in which the C library has to be loaded in each
process, the custom library is desirably small: The bionic
library in particular is a smaller library than, and has more
limited functionality than, the glibc library. Also, use of the
bionic library allows for greater speed of operation of a
mobile device due to the library’s small size and fast code
paths. Further, the bionic library also has built-in support for
important Android-specific services such as system proper-
ties and logging, although it should be further noted that the
bionic library does not support certain POSIX features, such
as C++ exceptions and wide characters (thus it is not quite
compatible with the glibc library, which is substantially
POSIX compliant). In view of the above, the Android envi-
ronment 22 utilizes the bionic library rather than the glibc
library, and all native code is compiled against bionic and not
glibe.

US 9,367,331 B2

19

In addition, embodiments of the present invention are
capable of operating in a manner in which pre-run-time com-
piled applications are enabled in one environment such as the
second (Linux-based) environment 24, while other register-
based applications are interpreted at run-time so as to be
enabled in another environment, such as the first (Android)
environment 22. The pre-run-time compiled applications can
among other things include, for example, C/C++ native appli-
cations that are compiled before run-time. Given such
embodiments, it is possible to have both pre-run-time com-
piled applications and register-based run-time interpreted
applications interact with a common physical environment
simultaneously, by virtue of being coupled through the com-
mon Linux kernel 18. Alternatively stated, such operation
enables GNU to operate pre-run-time compiled applications
(like OpenOffice, or Mozilla Firefox) concurrently with
Android running run-time interpreted Dalvik-intentioned
applications.

Notwithstanding the above, the present invention is
intended to encompass numerous other embodiments, includ-
ing numerous variations of the embodiments discussed
above. Thus, in a number of embodiments, it is envisioned
that the mobile device 10 transitions between mode states
(and consequently between environments) in response to an
unsolicited event such as the docking or undocking of the
mobile device 10. Yet, also in some embodiments it is con-
templated that the mobile device 10 can transition between
mode states (and between environments) based upon events
other than docking or undocking the mobile device 10, and/or
based upon events other than unsolicited events. By example,
if the mobile device 10 is stationary for a preset period of
time, the mobile device 10 can be programmed to operate in
the most energy efficient mode state, regardless of the device
status otherwise. In yet another example, a user can transition
the mode state from docked to mobile even if the device has a
connection with a peripheral device. Additionally, the type of
peripheral device connected to the mobile device 10 can
dictate whether an automatic mode state change sequence is
initiated or a user has provided a mode state change request.
In some cases, a user is able to select the mode state in which
to operate the mobile device 10.

Further, in some embodiments, it is possible for the mobile
device 10 to switch from one of the mode states (environ-
ments) to the other of the mode states (environments) when a
user invokes an application associated with the other mode
state. Indeed, depending upon the embodiment, the mobile
device 10 can be configured so that any event or events can
trigger a change in mode state (environment). For example, in
an embodiment where the mobile device 10 is in communi-
cation with a web server or intermediate server, a push from
that web server or intermediate server (e.g., a forced sending
of information from that server to the mobile device) can
automatically precipitate a switching from one environment
(e.g., the environment 24) to another environment (e.g., the
environment 22) suitable for receiving the pushed informa-
tion. Notwithstanding the above description, depending upon
the embodiment, the switching from one mode (environment)
to another can be viewed as a process of pre-emption. For
example, when an unsolicited event occurs that triggers a
switch between the environment 22 and the environment 24,
it can be said that the environment 22 is pre-empted by the
unsolicited event such that the environment 24 is then initi-
ated. Further, the present invention is intended to encompass
numerous further embodiments in which a variety of addi-
tional mode states (environments) are contemplated, includ-
ing a variety of mode states (environments) that depend upon

10

15

20

25

30

35

40

45

50

55

60

65

20

the particular mobile device 10 usage and the applications
available in the memory of the device hardware 20.

It is specifically intended that the present invention not be
limited to the embodiments and illustrations contained
herein, but include modified forms of those embodiments
including portions of the embodiments and combinations of
elements of different embodiments as come within the scope
of' the following claims.

The invention claimed is:

1. A method for booting a device having at least two simul-
taneous co-existing independent operating environments,
comprising the following steps:

initiating a start-up boot sequence;

initializing a core kernel;

identifying that the device is docked;

launching services common to a first operating system and

a second operating system that both operate on the core
kernel, wherein the services are other than kernel-level
services;

selecting a personal computing primary operating system

based at least in part upon the identifying that the device
is docked, wherein the first operating system is the per-
sonal computing primary operating system;

launching initializing scripts of the personal computing

primary operating system; and

launching initializing scripts of a secondary mobile oper-

ating system, wherein the second operating system is the
secondary mobile operating system, and wherein the
second operating system operates while the first operat-
ing system is operating as the personal computing pri-
mary operating system.

2. The method according to claim 1, wherein the device
boots the personal computing primary operating system first
when the device is identified as docked.

3. The method according to claim 1, wherein the device
boots the mobile operating system first when the device is
booted while the device is not identified as docked.

4. The method of claim 1, wherein the first and second
operating systems do not exist in a virtualization or emulation
scheme but rather operate on the core kernel.

5. A method for initializing an operating system, compris-
ing the following steps:

initializing a boot sequence;

selecting at least two independent, simultaneous operating

system environments for operating a mobile device, the
at least two operating system environments being con-
figured to be independent and co-exist while the device
is operational;

launching a common kernel on which each of the at least

two operating system environments operate;

launching application services common to a first of the at

least two operating system environments and a second of
the at least two operating system environments, wherein
the services are other than kernel-level services;

based at least in part upon a mode state of the device,

selecting one of the first operating system environment
and the second operating system environment as the
primary operating system environment and the other of
the first operating system environment and the second
operating system environment as the secondary operat-
ing system environment; and

launching initializing scripts for the primary and secondary

operating system environments;

wherein the second operating system environment is the

primary operating system environment when the mode
state is a docked mode, and wherein the first operating
system environment operates while the second operat-

US 9,367,331 B2

21

ing system environment is operating as the primary
operating system environment.

6. The method according to claim 5, further comprising the
step of initiating a secondary operating system application.

7. The method according to claim 5, wherein the first
operating system environment is mobile operating system
environment.

8. The method of claim 5, wherein the services are
launched simultaneously.

9. The method of claim 5, wherein the first and second
operating systems do not exist in a virtualization or emulation
scheme but rather operate on the common kernel.

10. The method of claim 5, wherein whether the launching
of the initializing scripts of the personal computing primary
operating system occurs subsequent to or prior to the launch-
ing of the initializing scripts of the secondary mobile operat-
ing system depends upon the mode state.

11. A method for operating a device comprising the fol-
lowing steps:

initiating a boot sequence, configured to launch two co-

existing operating system environments that do not exist
in a virtualization or emulation scheme but rather oper-
ate on a shared, single kernel;
identifying the mode state of the device;
selecting a first of the two co-existing operating system
environments as a primary operating system environ-
ment based at least in part upon the mode state; and

changing the primary operating environment to a second of
the two co-existing operating system environments
based at least in part upon a change in the mode state of
the device, wherein the first of the operating system
environments still continues to operate while the second
operating system environment is operating as the pri-
mary operating environment;

wherein the mode state changes from a mobile mode to a

docked mode when the device is docked.

12. The method according to claim 11, wherein the mode
state changes from a docked mode to a mobile mode when the
device is removed from a docking station.

13. The method according to claim 12, wherein the primary
environment switches from the mobile mode to a desktop
mode when the device is docked.

14. The method of claim 11 further comprising launching
services Common to the two co-existing operating system
environments.

15. A method for operating a device having a kernel, a first
environment with first middleware, and a second environ-
ment with second middleware, wherein each of the environ-
ments interfaces the kernel:

initializing the kernel;

10

15

20

25

30

35

40

45

22

identifying a device mode state;

launching services common to each of the first environ-

ment and the second environment;

determining one of the first and second environments as

being a primary environment based at least in part upon
the mode state; and

launching initializing scripts for each of the first and sec-

ond environments,

wherein the first middleware of the first environment is

configured to interpret application code at run-time with
a byte-code interpreter, and the second middleware of
the second environment is configured to execute a pre-
run-time-compiled application;

and further including determining that an event has

occurred; and

in response to the event, switching from the one of the

environments being the primary environment to the
other of the environments being the primary environ-
ment
wherein the event that is determined to have occurred is a
docking of the device in relation to another device, and
wherein the switching from the one environment to the
other environment involves a switching between a first
focus pertaining to the pre-run-time compiled applica-
tion and a second focus pertaining to another application
based upon the interpreted application code.
16. The method of claim 15, wherein the services are other
than kernel-level services.
17. A method for operating a mobile device comprising:
providing at least two operating system environments for
operating the mobile device, the at least two operating
system environments being configured to be indepen-
dent and co-exist while the device is operational;

providing a common kernel on which each of the at least
two operating system environments operate; and

launching application services common to a first of the at
least two operating system environments and a second of
the at least two operating system environments, wherein
the services are other than kernel-level services.

18. The method of claim 17, wherein the at least two
operating system environments do not exist in a virtualization
or emulation scheme but rather operate on the common ker-
nel.

19. The method of claim 17, further comprising:

based at least in part upon a mode of the device, selecting

a first of the at least two operating system environments
as a primary operating system environment and a second
of the at least two operating system environments as a
second operating system environment.

#* #* #* #* #*

